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Abstract:  Accurate water level forecasts are of vital importance along the 
Gulf of Mexico as its waterways play a critical economic role for a number of 
industries including shipping, oil and gas, tourism, and fisheries. While 
astronomical forcing (tides) is well tabulated, water level changes along the 
Gulf Coast are frequently dominated by meteorological factors. Their impact 
is often larger than the tidal range itself and unaccounted for in present 
forecasts. We have taken advantage of the increasing availability of real time 
data for the Texas Gulf Coast and have developed neural network models to 
forecast future water levels. The selected inputs to the model include water 
levels, wind stress, barometric pressures as well as tidal forecasts and wind 
forecasts. A very simple neural network structure is found to be optimal for 
this problem. The performance of the model is computed for forecasting 
times between 1 and 48 hours and compared with the tide tables. -The model 
is alternatively trained and tested using three-month data sets from the 1997, 
1998 and 1999 records of the Pleasure Pier Station located on Galveston 
Island near Houston, Texas. Models including wind forecasts outperform 
other models and are considerably more accurate than the tide tables for the 
forecasting time range tested, demonstrating the viability of neural network 
based models for the forecasting of water levels along the Gulf Coast. 

INTRODUCTION 
Accurate water level forecasts along the Gulf of Mexico coast, estuaries, and 

intracoastal waterways are of great importance to federal, state, and local agencies, 
industries such as ports, fisheries, construction and coastal communities. The overall 
economic importance of the Gulf of Mexico for the U.S. economy is high: nine out of 
the twelve largest U.S. ports with tonnage greater than 50 million tons are located along 
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the Gulf coast and account for 52% of the U.S. tonnage (NOAA, 1999). For ports and 
waterways along the Atlantic and Pacific coasts water level forecasts are obtained by 
consulting the tide tables. In the Gulf of Mexico, water level changes are often 
dominated by meteorological factors the impact of which are often larger than the tidal 
range itself and unaccounted for in present forecasts (Cox et al., 2002). A one-month 
comparison between measured water levels and tidal forecasts is presented in figure 1 
for the Pleasure Pier tide station located on Galveston Island near Houston, Texas, for 
the spring of 1997. As can be observed the difference between tidal forecasts and actual 
water levels can be larger than one foot for several consecutive days corresponding to 
the passage of frontal systems. The passage of frontal systems does in fact represent 
one of the major forcing for water levels and one of the main reasons for the inadequacy 
of the tide tables along the Gulf Coast. The passage of frontal systems across Texas and 
the Gulf of Mexico takes place approximately with a weekly frequency between early 
October and late May. In 1994 the National Oceanic and Atmospheric Administration 
(NOAA) conducted a current assessment program in Aransas Pass, Texas, and Corpus 
Christi Bay, Texas, and indicated that for typical weather conditions and for current 
predictions (a closely related parameter) the "presently published predictions do not 
meet working standards" (NOAA, 1991; NOAA 1994). Differences between observed 
and predicted current velocities were up to 100%, and wind was identified as the main 
cause with density variations, morphology and fresh water runoff playing a secondary 
role. To remedy the problem, both reports recommended forecasting based on real-time 
data including wind data. As present models are based on harmonic analysis they are 
fundamentally unable to account for these aperiodic forcing functions and new 
modeling techniques relying on real-time data must be introduced. 

Sophisticated models based on finite elements and finite differences are ideal to 
understand the physical processes of coastal and estuarine dynamics and for simulating 
storm surges during hurricanes events. These models provide highly accurate solutions 
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Fig. 1. Comparison between measured water levels (-) and tidal forecasts (. . .)  at 
Galveston Pleasure Pier during the spring of 1997 
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to the governing equations of motion when the boundary conditions and time histories 
of the forcing functions are well prescribed. Their ability as forecasting tools, however, 
is limited to the accuracy of the forecasted time histories of the forcing conditions such 
as wind stress. On the other hand, empirical models such as those constructed using 
neural network techniques can yield accurate forecasts of water levels by incorporating 
data for established weather patterns. The prediction of water level by a neural network 
model at an entrance to a harbor channel, for example, can be used either directly as an 
aid to navigation or indirectly as a seaward boundary for a finite element model of the 
detailed flow in the harbor channel. In the second case, the neural network model 
provides two advantages: it reduces the requirements of having a large computation grid 
outside the entrance channel, and it can easily incorporate information from land-based 
stations (e.g., information about frontal passages) which may be difficult to incorporate 
into a finite element model discretized over only the water. The purpose of this paper is 
to show that a relatively simple neural network model can be constructed and trained 
using a fairly modest data set (three months) to provide accurate forecasts of water 
levels on a time scale of 1 to 48 hours. Direct comparisons or integration with finite 
element models is beyond the scope of the present work and wil| be pursued in the 
future. 

The modeling philosophy applied in this work is to include and scale data streams 
such as observational data and forecasts to account for the main forcing of a problem 
and train a neural network to establish relationships between forcing functions and 
future water level changes. Of course, large amounts of real-time observational data are 
required to apply this modeling technique. Over the past ten years Texas has seen a 
dramatic increase in the availability of real-time observational data along the Gulf coast 
including parameters such as water levels, wind speeds, wind directions, barometric 
pressures, water temperatures and air temperatures. The Texas Coastal Ocean 
Observation Network (TCOON) is one of the main sources of such data and consists of 
60 platforms from Brownsville to the Louisiana border (Michaud et al., 2001). TCOON 
station locations are illustrated in figure 2. The location of the Pleasure Pier tide station 
located on Galveston Island near Houston is highlighted as data from this station is used 
to test the model. Increases in the performance and decreases in the cost of sensors, 
telecommunication and overall information processing equipment should continue for 
the foreseeable future and make the deployment of data intensive models possible for 
most coastlines. The present work takes advantage of the real-time data available 
through the TCOON network and the modeling capabilities of neural networks to 
predict water levels in real-time and alleviates the present limitations of the tide tables. 

NEURAL NETWORK MODELING OF WATER LEVEL CHANGES 
The concept of neural networks emerged in the sixties as scientists aimed at emulating 
the functioning of the brain. The main advantages and key characteristics of neural 
networks for water level forecasting are their non-linear modeling capability, their 
generic modeling capacity, their robustness to noisy data, and their ability to deal with 
high dimensional data (Rumelhart et al., 1995). At the heart of a neural network is the 
assignment of judicious weights and biases to the elemental neurons of the network. 
This learning process must be based on a large set of prerecorded observations such as 
the TCOON database. Rumelheart et al. (1986) developed a type of learning algorithm 
to assign such a set of optimum weights and biases called backpropagation. 
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Fig. 2. Gulf of Mexico with the locations of the TCOON stations, the Pleasure Pier 
Station on Galveston Island and schematic of a typical frontal boundary 

Backpropagation neural networks use the repeated comparison between the output of a 
neural network for a given input and an associated set of target vectors and optimize the 
neuronal weights and biases by backpropagating a function of this error through the 
network. The use of error backpropagation has been a key for the application of neural 
network to a growing number of practical cases including environmental, financial, and 
engineering problems (Swingler, 1996, Zirili, 1997). During the past five to ten years, 
neural networks have also been applied successfully to a growing number of coastal and 
riverine cases such as the forecasting of physical or water quality parameters (Mase et 
al., 1995, Recknagel et al., 1997, Mase and Kitano, 1999, Moatar et al., 1999, Tsai and 
Lee, 1999). Neural networks are increasingly tested for the forecasting of flooding 
along rivers (Campolo et al., 1997, Kim and Barros, 2001) a related application. The 
application of neural networks to water level forecasting consists in designing and 
training a network that, given a time series of water levels weather observations and 
forecasts (wind and tidal forecasts), accurately predicts the next water levels for a 
period of one, six, twelve, twenty four hours or more. The typical structure of the 
neural networks used in this work is illustrated in figure 3 and is relatively simple with 
one hidden layer and one output layer. Neural networks with additional hidden layers 
were also tested but did not improve on the performance of the two layer models. The 
elements of the input decks are chosen to track the variation of the main forcing 
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Fig. 3. Schematic of the type of neural network model applied to the problem of water 
level forecasting including outputs, inputs, and neural network 

functions to the problem. They consist of time series of previous water levels, 
barometric pressures, wind speeds, and wind directions. Also included as part of the 
input decks are tidal forecasts computed using Xtide 2 (Hopper, 2000). The tidal 
forcing is included in the model by using water level differences between measured and 
forecasted water levels and the water levels predicted by the tide tables. The changes in 
the resulting water level differences are then a direct function of the meteorological 
forcing. Finally the model forecasts changes in water level differences rather 
than absolute water level differences. Focusing the model on changes in water level 
differences allows a more direct relationship between short-term forcing and changes in 
water levels. Also this allows inclusion of long-term effects such as steric effects as 
part of the input to each short-term forecasts. The models were tested with and without 
wind forecasts. When tested with wind forecasts the models initially included exact 
wind predictions with actual future measurements used as the forecasts. The influence 
of the accuracy of the forecasts was then evaluated by adding an error to the wind 
forecasts proportional to the wind and forecasting time. A discussion of the influence of 
the wind forecasts on the model accuracy as well as discussions on the characteristics of 
the optimum input deck and neural network structure are included as part of the results 
and discussion section. 'Tansig' transfer functions are used for the hidden and output 
layers while the input decks are scaled to a [-1,1] range. The neural network models are 
trained using a backpropagation algorithm and all computations are performed within 
the MATLAB 5.3/version 3 of the Neural Network Toolbox (The Math Works Inc., 
1998) computational environment running on a Pentium HI PC. 
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RESULTS AND DISCUSSION 
The model was tested for the Pleasure Pier tide station on the Gulf Coast side of 

Galveston Island near Houston, Texas, (http:lldnr.cbi.tamucc.eduloverview1022). The 
station is located near the ship channel leading to the port of Houston--one of the largest 
ports in United States. To test and optimize the models, the neural networks were 
successively trained over three data sets, spring 1997, spring 1998, and spring 1999. 
The approximately three-month data sets were chosen as they are representative of the 
type of conditions that can be encountered during frontal passages. The model was 
trained over one of the data sets and then applied to the two other data sets to assess the 
model performance. Figure 4 compares the performance of the model when trained 
over the 1999 data set and applied to make 24-hour forecasts for the 1997 data set. As 
can be observed the neural network outperforms significantly the tide tables during the 
frontal passages when wind forcing becomes the primary forcing driving water level 
changes. Figure 5 compares the performance of the model trained during 1997 and 
applied to the 1999 data set. The 24-hour water level forecasts displayed in figure 5 
improve considerably on the tide tables matching closely the measured water levels and 
demonstrate the ability of the neural network to predict water levels during frontal 
passages. The input deck of the neural network used for the examples in figures 4 and 5 
consists of 5-hour time series of previous water levels, tidal forecasts, wind speeds and 
wind directions, 20-hour times series of barometric pressures and an exact wind forecast 
for the time of forecast, i.e. a 24-hour wind forecast. The structure of the neural 
network is very simple with only one neuron in both the hidden and output layers. The 
optimization of the model is discussed later in this section. The fact that a very simple 
neural network is capable of making relatively accurate water level predictions 
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Fig. 4. Comparison of water levels measured at Galveston's Pleasure (-) with tide 
tables (top, ...) and neural-network forecasts (bottom chart, . . .) 

 Ocean Wave Measurement and Analysis (2001) 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

T
ex

as
 A

&
M

 U
ni

v-
C

or
pu

s 
C

hr
is

ti 
on

 0
8/

21
/2

0.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



OCEAN WAVE MEASUREMENT AND ANALYSIS 1541 

0 . 6  

O.4 
.~O 
a -  

~r 0 . 2  

m 
ca 0 

-0.2 

-0.4 

. . . . .  N e u r a l  Netvn~rt~ F o r e c a s t  | 
T ide  Tab les  J Measured  Wate r  LeVe lS  

~', ;5 ' g, g5 ' 69 66 

J u l i a n  D a y ,  1 9 9 9  

i 
7 0  7'1 7 2  

Fig. 5. Performance of the neural network model when trained over the 1997 data 
set and applied to a strong frontal passage during the spring of 1999 

should not be surprising as Cox et al. (2002) have shown that a simple linear model 
based on the wind stress and a time delay could already lead to significant 
improvements of water level forecasts as compared to the tide tables. 

To compare different versions of the model quantitatively over the complete data 
sets, models were evaluated by computing an error index including all forecasted water 
levels. The error index is detailed below and is the relative standard deviation of the 
water level differences or the ratio of the root mean square of the differences between 
forecasted and measured water levels and the root mean square of the measured water 
levels (Cox et al., 2002). The error index is zero for a perfect forecast and approaches 
one when the accuracy of the forecasts is of the same order as the water level variation. 

(l  t(Hi)21  (1) 
where N = number  of water level measurements and forecasts; Hi = observed water 
levels (m); and Xi = forecasted water levels (m). To assess the model performance over 
the three data sets the models are first trained over one of the data sets and then applied 
to the two other data sets. The operation is repeated by rotating the training data sets 
and the data sets over which the models are tested. An average model performance is 
then computed by averaging the performance of the models for the six resulting time 
series of forecasted water levels. The performance variability of the models is 
estimated by computing the standard deviation over the six different cases. 

The error index was used to optimize the network structure and the input deck. The 
network parameters were optimized for 24-hour forecasts and verified by comparing 
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with the optimum parameters obtained for 9-hour forecasts as well. There were no 
substantial differences between the optimized neural network parameters optimized for 
9 and 24-hour forecasts. The extent of the past wind speeds and wind directions time 
series was varied between 0 and 30 hours. The optimal time series length was found to 
be 5 hours with relatively small changes in performance when increasing or decreasing 
the length of the time series in the 1 to 20-hour range. Input time series longer than 20 
hours led to decrease in performance. It should be noted that including longer time 
series in the input deck does not necessarily mean that the additional input data will be 
taken into account by the model. As the weights of the neural network are optimized 
during the training procedure the weights of the additional inputs can be zero. A more 
in-depth study of the variation of neural network weights and biases when optimizing 
the model is ongoing. Although the neural network should optimize itself and not take 
into account unnecessary inputs, larger input decks will affect the training times and 
possibly the final weights and biases. The length of the input deck was therefore chosen 
as the smallest time series leading to the best model performance. The optimum past 
water level measurements and tidal levels time series was 5 hours while the optimum 
barometric pressure time series length was 20 hours. The barometric pressure time 
series had a relatively small impact on the model performance on the order of 5%. This 
is likely due to the fact that winds are in large part a result of the pressure differences 
across the frontal boundaries and that therefore the barometric pressure effect is in large 
part already included through the wind inputs. As will be discussed later in this 
section, the addition of a wind prediction for the time of the forecast has a significant 
effect on the performance of the model for prediction times longer than 6 hours. The 
optimized model for this study includes 1 hidden and 1 output neuron, 5 hour time 
series of previous wind speeds, wind directions, water level measurements and tidal 
predictions, 20 hour time series of barometric pressures and a wind forecast for the time 
of the forecast. The performance of the model is displayed for a range of 1 to 48 hours 
forecasts in figure 6. As can be observed, the model outperforms significantt3, the tide 
tables indicating that neural network models can indeed factor in meteorological forcing 
and lead to more accurate water level forecasts along the Gulf Coast. 

0.9 ..... 

0 . 8 - .  .... , , ,0 ~" " t, 0+7 "~ " ~ -  

x 0.6 ~ a, , ~  ~ ~ r . . . . . . . , ~  ~>-- 
0.5. ~ . , , ,~=~==, , j~q . .~  

I m O* Forecasts not Including Wind Forecasts 
0.2 - ' - ~ - -  Forecasts Including Modified Wind Speed at Forecasted Time 
0.1 'mmO"mForecasts Including Exact Wind Speed at Forecasted Time 

@ T i d e  Charts 
0 + , '  ' . . . . .  
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Fig. 6. Comparison of the performance of neural network models forecasting 
future water levels at Galveston, Texas, Pleasure Pier Station. 
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To assess the sensitivity of the model to the accuracy of the wind forecasts, an error 
proportional to the magnitude of the wind forecast and the forecasting time was added 
to the exact wind forecasts (Cox et al., 2002). The model was then trained on the exact 
wind forecasts and tested with the modified wind forecast. As can be observed in figure 
6, the model performance is not affected for forecasting times below 15 hours and not 
affected significantly for longer forecasting times. The model was also tested while 
excluding wind forecasts. The results are displayed in figure 6 and show that a model 
without wind forecasts performs well for up to 6-hour forecasts and does not provide 
significant improvements over the tide tables for forecasting times longer than 24 hours. 
The accuracy of the model without wind forecasts will likely vary depend on the 
location as it depends on the natural time lags between the onset of frontal driven winds 
and the water level response (Cox et al., 2002). As the wind forecasts are the primary 
factor for accuracy of the model past 12 to 15 hours, the model is presently being 
modified to include wind forecasts for up to 60-hour predictions extracted in real time 
from the National Center for Environmental Predictions Meso Eta model. The real time 
inclusion of the wind forecasts is conducted as part of a collaboration with the National 
Weather Service. The Meso Eta forecasts will allow access not only to accurate wind 
forecasts for the station for which the model is trained but also wind forecasts for large 
portions of the Gulf of Mexico allowing for the development of more sophisticated 
models. 

Present plans include the application of the model to other locations along the 
coast of Texas and its real time access through the World Wide Web. Depending on the 
location the models could require the addition of other inputs such as precipitation and 
riverine inflows. As the availability of real-time data is constantly improving along the 
Texas Gulf Coast this should not be a significant limiting factor. This technique will be 
more difficult to apply for the case of predicting storm surges during strong tropical 
storms and hurricanes for several reasons. First, compared to frontal events which 
occur almost weeny in the fall and spring months, tropical storms are more episodic 
and the available data base is small. Second, frontal events cover a large spatial area 
with conditions (wind speed, direction) relatively constant over that area compared to 
tropical storms which are more localized. Different types of neural network modeling 
techniques may have to be adapted to address the dynamic and localized nature of 
tropical storms. 

CONCLUSIONS 
A new data intensive forecasting method based on neural network modeling was 

developed to predict water levels along the Gulf Coast. The neural networks are trained 
to forecast water levels by establishing a relationship between time series of previous 
water levels, wind stress, and barometric pressures and future water levels. The 
technique was tested over a period of three years for a tide station along Galveston 
Island near Houston, Texas. Models were tested with and without including wind 
forecasts. Models including wind forecasts significantly outperformed the tide tables 
for the tested forecasting range of 1 hour to 48 hours. The models not including wind 
forecasts performed well up to 12 to 18 hours. Further work includes the addition of 
more sophisticated wind forecasts extracted in real time from the National Center for 
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Environmental Predictions Meso Eta model and expanding the model to other locations 
along the Texas coast. 
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